Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Protistology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic structure of a morphological species within the amoeba genus Korotnevella (Amoebozoa: Discosea), revealed by the analysis of two genes

Authors: Vasily V. Zlatogursky; Alexander Kudryavtsev; Ilya A. Udalov; Natalya Bondarenko; Jan Pawlowski; Alexey Smirnov;

Genetic structure of a morphological species within the amoeba genus Korotnevella (Amoebozoa: Discosea), revealed by the analysis of two genes

Abstract

Amoebae of the genus Korotnevella are covered with scales, the structure of which is believed to be species-specific and allows distinguishing species reliably at the morphological level. We studied members of this genus in order to assess the genetic structure of the local populations of amoebae. For the present study we isolated nine freshwater strains of Korotnevella, belonging to three species, from two locations in North-Western Russia. In order to obtain data on the population structure of these amoebae, we identified all isolates based on the light-microscopic morphology and scale structure and investigated both inter-strain and intra-strain polymorphism of Cox I and 18S rRNA genes. Results show that both genes provide congruent patterns of population structure. The Cox I gene appears to be more reliable DNA barcode while the 18S rRNA gene shows an interesting pattern of polymorphism, which may represent phylotypes of amoebae. Local population of amoebae in every studied species consists of a number of genetic lineages (phylotypes), some shared between the populations while others are unique to a local habitat.

Related Organizations
Keywords

Electron Transport Complex IV, Polymorphism, Genetic, Genes, Protozoan, RNA, Ribosomal, 18S, Fresh Water, Amoebozoa, Ecosystem, Russia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?