Downloads provided by UsageCounts
handle: 11380/982137
AbstractHigh power density, low weight, compact dimensions, high efficiency as well as reliability are the key factors in designing and dimensioning piston engines for General Aviation and Unmanned Aerial Vehicle (UAV) power plants. Despite of new available technologies, conventional solutions are still struggling to fulfill simultaneously all those requirements.The paper explores the application of a new design of 2-Stroke externally scavenged engines to aircraft. The new concept basically consists in the use of a patented rotary valve for controlling the flow through a set of inlet ports, enabling supercharging and the achievement of extremely high power densities compared to conventional solutions. The scavenging is realized by using an external pump, made up of a further cylinder, whose piston is connected to the same crankshaft. The piston pump allows the crankcase to be used as a conventional oil sump, and greatly improves the crankshaft balance. No poppet valves or camshafts need to be installed, since the flow is driven by piston-controlled ports and by two sets of reed valves.The engine can adopt two types of combustion system: Gasoline Direct Injection (GDI) for SI operations, and Direct Injection Common Rail for Diesel cycle. The paper is focused on the last version, since it can run on standard aircraft fuel.The Diesel engine has three cylinders and three piston pumps, for a total displacement of 1.5 liter The engine is turbocharged and inter-cooled, in order to reach a power target, at sea level, of 150 kW@4000rpm. Another fundamental target is the minimum power of 100kW, at the altitude of 20,000 feet.The paper reviews the design of the engine and presents the numerical prediction of the key performance parameters.
Aircraft, Energy(all), 2-Stroke-Engines, HSDI Diesel Engine; 2-stroke engines, CFD-simulation, Diesel
Aircraft, Energy(all), 2-Stroke-Engines, HSDI Diesel Engine; 2-stroke engines, CFD-simulation, Diesel
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 112 | |
| downloads | 163 |

Views provided by UsageCounts
Downloads provided by UsageCounts