Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computer Methods in ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Methods in Applied Mechanics and Engineering
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Topology optimization using polytopes

Authors: Glaucio H. Paulino; Glaucio H. Paulino; Ivan F. M. Menezes; Arun L. Gain; Leonardo S. Duarte;

Topology optimization using polytopes

Abstract

Meshing complex engineering domains is a challenging task. Arbitrary polyhedral meshes can provide the much needed flexibility in automated discretization of such domains. The geometric property of the polyhedral meshes such as the unstructured nature and the facial connectivity between elements makes them specially attractive for topology optimization applications. Numerical anomalies in designs such as the single node connections and checkerboard pattern, which are difficult to manufacture physically, are naturally alleviated with polyhedrons. Special interpolants such as Wachspress, mean value coordinates, maximum entropy shape functions are available to handle arbitrary shaped elements. But the finite elements approaches based on these shape functions face some challenges such as accurate and efficient computation of the shape functions and their derivatives for the numerical evaluation of the weak form integrals. In the current work, we solve the governing three-dimensional elasticity state equation using a Virtual Element Method (VEM) approach. The main characteristic difference between VEM and standard finite element methods (FEM) is that in VEM the canonical basis functions are not constructed explicitly. Rather the stiffness matrix is computed directly utilizing a projection map which extracts the linear component of the deformation. Such a construction guarantees the satisfaction of the patch test (used by engineers as an indicator of optimal convergence of numerical solutions under mesh refinement). Finally, the computations reduce to the evaluation of matrices which contain purely geometric surface facet quantities. The present work focuses on the first-order VEM in which the degrees of freedom associated with the vertices. Utilizing polyhedral elements for topology optimization, we show that the mesh bias in the member orientation is alleviated.

Keywords

Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
Green
bronze