
In this paper we state in a new form the algebraic problem arising from the one-field displacement finite element method. The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the non-linear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of F.E.M. computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. By using the GMRES algorithm, we build for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because ail fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
[SDE] Environmental Sciences, Iterative numerical methods for linear systems, Finite element method, Finite element methods applied to problems in solid mechanics, Applied Mathematics, [SDU.STU]Sciences of the Universe [physics]/Earth Sciences, Computational Mathematics, STRAIN ALGORITHM, FINITE ELEMENT METHOD, MIXED ELEMENT, [SDE]Environmental Sciences, GMRES ALGORITHM, 518, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Mixed element, Strain algorithm, GMRES algorithm
[SDE] Environmental Sciences, Iterative numerical methods for linear systems, Finite element method, Finite element methods applied to problems in solid mechanics, Applied Mathematics, [SDU.STU]Sciences of the Universe [physics]/Earth Sciences, Computational Mathematics, STRAIN ALGORITHM, FINITE ELEMENT METHOD, MIXED ELEMENT, [SDE]Environmental Sciences, GMRES ALGORITHM, 518, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Mixed element, Strain algorithm, GMRES algorithm
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
