Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2010
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Conservation
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species

Authors: Giordano, Paola Florencia; Navarro, Joaquin Luis; Martella, Monica Beatriz;

Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species

Abstract

Abstract We developed large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea ( Rhea americana ), a near-threatened species, in two areas of central Argentina with different land use: a grassland area (ca. 4943 km 2 ) mainly devoted to cattle grazing and an agro-ecosystem area (ca. 4006 km 2 ) mostly used for crop production. The models were developed using logistic regression and were based on current records of Greater rhea occurrence coupled with remote sensing data, including land cover and human presence variables. The habitat suitability maps generated were used to predict the suitable habitat patch structure for wild rhea populations in each area. Fifty-one percent of the total grassland area was suitable for the species, being represented by a single large patch that included 62% of the individual locations. In the agro-ecosystem, only 28% of the total area was suitable, which was distributed among four patches. Seventy percent of rhea observations were in suitable habitat, with all rheas grouped in the largest patch. Conservation efforts for preserving wild rhea populations should be focused on maintaining habitats similar to grasslands, which are less profitable for landowners at present. Consequently, the protection of the pampas grasslands, a key habitat for this species as well as for others with similar habitat requirements, will demand strong conservation actions through the reconciliation of interests between producers and conservationists, since the proportion of croplands is increasing.

Country
Argentina
Keywords

GRASSLAND PAMPAS, LAND-USE CHANGES, LOGISTIC REGRESSION, https://purl.org/becyt/ford/1.6, HABITAT SUITABILITY MODEL, https://purl.org/becyt/ford/1, GEOGRAPHIC INFORMATION SYSTEM, RHEA AMERICANA CONSERVATION

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green