Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advances in Space Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Space Research
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CLUSTER spacecraft observation of a thin current sheet at the Earth’s magnetopause

Authors: Markus Fränz; Yu. V. Khotyaintsev; A. Korth; S. Savin; B. Nikutowski; H. Rème; Iannis Dandouras; +3 Authors

CLUSTER spacecraft observation of a thin current sheet at the Earth’s magnetopause

Abstract

Abstract On March 30, 2002 within 17 min the four CLUSTER spacecraft crossed the Earth’s high-latitude magnetopause three times. We found that all three magnetopause current sheets are nearly co-planar on the scales of the CLUSTER spacecraft separation. The thickness of the current sheets changes from 1 to 40 magnetosheath-proton thermal gyro-radii. The thinnest (first crossed) magnetopause current sheet is locally open and might be electron driven. The frozen-in condition of the thermal ions is violated, the Hall term (Lorentz force term) is comparable to the electric field. Substantial electrostatic wave intensities are observed at lower-hybrid frequencies on the magnetospheric side of the thinnest magnetopause current sheet. We obtained that the quasi-linear diffusion rate due to lower-hybrid drift waves would not explain the formation of the adjacent boundary layer and a fast magnetopause thickening. Instead, the diffusion is enhanced due to strong, non-linear wave-particle interactions. We estimate the anomalous collision- and diffusion rates by calculating the correlation between the fluctuations of current density and magnetic field. The resulting strong anomalous diffusion can account for the formation of the adjacent magnetopause boundary layers and eventually the fast magnetopause thickening.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?