Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Animal Reproduction ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Animal Reproduction Science
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia

Authors: Hassan, Abbasi; Sayyed Morteza, Hosseini; Mahdi, Hajian; Zahra, Nasiri; Mehrnoosh, Bahadorani; Mojtaba, Tahmoorespur; Mohammad Reza, Nasiri; +1 Authors

Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia

Abstract

Recent studies show that spermatogonial stem cells (SSCs) are able to colonize and form mature spermatozoa following transplantation into germ cell depleted testes of recipient males. Therefore, efficient ways for enrichment and gene transfer into SSCs provides a powerful tool for production of transgenic animals. In order to adapt the technique to goats, three issues were addressed: (i) enrichment of the undifferentiated spermatogonia including SSCs using magnetic activated cell sorting (MACS), (ii) lentiviral vector-mediated transduction of an enhanced green fluorescent protein (EGFP) transgene into enriched cells, and (iii) transplantation of transduced undifferentiated spermatogonia into the germ cell depleted testes of immune-suppressed mice to assess for migration and colony formation ability. Enriched cells were transduced by lentiviral vectors and subsequently analyzed for expression of THY1, PLZF, VASA, UCHL1 and BCL6B genes. Cells were also analyzed for GFP and PLZF by flow cytometry. Enriched transduced cells were transplanted into germ cell depleted mice testis. Quantitative analysis of transcripts revealed that MACS-enrichment significantly increased the expression of SSC-characteristic genes THY1, PLZF, VASA, UCHL1 and BCL6B compared to non-enriched population (P≤0.05). EGFP transduction did not affect the expression levels of SSC-characteristic genes. Flow cytometry revealed that 72% of transduced-enriched cells were positive for EGFP. Finally, transduced-enriched goat SSCs could colonize within the cells into the seminiferous tubules of germ cell depleted recipient mice at higher frequency than non-enriched cells. The results indicated that enrichment of goat undifferentiated spermatogonia by magnetic-activated cell sorting for THY1 antibody combined with lentiviral vector-mediated transduction has the potential to be used for production of transgenic goats.

Related Organizations
Keywords

Male, Reverse Transcriptase Polymerase Chain Reaction, Goats, Stem Cells, Green Fluorescent Proteins, Seminiferous Tubules, Flow Cytometry, Antibodies, Spermatogonia, Mice, Gene Expression Regulation, Animals, Thy-1 Antigens

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!