Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Mathemat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Mathematics
Article . 2018 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the embeddability of real hypersurfaces into hyperquadrics

Authors: Kossovskiy, Ilya; Xiao, Ming;

On the embeddability of real hypersurfaces into hyperquadrics

Abstract

In this paper, we provide {\em effective} results on the non-embeddability of real-analytic hypersurfaces into a hyperquadric. We show that, for any $N >n \geq 1$, the defining functions $��(z,\bar z,u)$ of all real-analytic hypersurfaces $M=\{v=��(z,\bar z,u)\}\subset\mathbb C^{n+1}$ containing Levi-nondegenerate points and locally transversally holomorphically embeddable into some hyperquadric $\mathcal Q\subset\mathbb C^{N+1}$ satisfy an {\em universal} algebraic partial differential equation $D(��)=0$, where the algebraic-differential operator $D=D(n,N)$ depends on $n, N$ only. To the best of our knowledge, this is the first effective result characterizing real-analytic hypersurfaces embeddable into a hyperquadric of higher dimension. As an application, we show that for every $n,N$ as above there exists $��=��(n,N)$ such that a Zariski generic real-analytic hypersurface $M\subset\mathbb C^{n+1}$ of degree $\geq ��$ is not transversally holomorphically embeddable into any hyperquadric $\mathcal Q\subset\mathbb C^{N+1}$. We also provide an explicit upper bound for $��$ in terms of $n,N$. To the best of our knowledge, this gives the first effective lower bound for the CR-complexity of a Zariski generic real-algebraic hypersurface in complex space of a fixed degree.

In this (second) version we remove the codimension assumption $N \ leq 2n$. The paper is to appear in Advances in Mathematics

Keywords

CR-embeddings, Embeddings of CR manifolds, Mathematics - Complex Variables, CR-manifolds, differential invariants, FOS: Mathematics, Complex Variables (math.CV)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
bronze