Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Numerical Algorithmsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Numerical Algorithms
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation

Authors: Shen, Shujun; Liu, Fawang; Anh, Vo;

Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation

Abstract

In this paper, we consider a space-time Riesz---Caputo fractional advection-diffusion equation. The equation is obtained from the standard advection-diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative of order ????(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of order β 1???(0,1) and β 2???(1,2], respectively. We present an explicit difference approximation and an implicit difference approximation for the equation with initial and boundary conditions in a finite domain. Using mathematical induction, we prove that the implicit difference approximation is unconditionally stable and convergent, but the explicit difference approximation is conditionally stable and convergent. We also present two solution techniques: a Richardson extrapolation method is used to obtain higher order accuracy and the short-memory principle is used to investigate the effect of the amount of computations. A numerical example is given; the numerical results are in good agreement with theoretical analysis.

Countries
China (People's Republic of), Australia
Related Organizations
Keywords

Stability and convergence, Numerical approximation, Caputo fractional derivative, Richardson extrapolation, : Numerical approximation, Short-memory principle, 518, Riesz fractional derivative, 530, 510

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?