Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Genetics
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Genetics
Article . 2007
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thioredoxins in chloroplasts

Authors: Stéphane D. Lemaire; Stéphane D. Lemaire; Mirko Zaffagnini; Emmanuelle Issakidis-Bourguet; Vincent Massot; Laure Michelet;

Thioredoxins in chloroplasts

Abstract

Thioredoxins (TRXs) are small disulfide oxidoreductases of ca. 12 kDa found in all free living organisms. In plants, two chloroplastic TRXs, named TRX f and TRX m, were originally identified as light dependent regulators of several carbon metabolism enzymes including Calvin cycle enzymes. The availability of genome sequences revealed an unsuspected multiplicity of TRXs in photosynthetic eukaryotes, including new chloroplastic TRX types. Moreover, proteomic approaches and focused studies allowed identification of 90 potential chloroplastic TRX targets. Lately, recent studies suggest the existence of a complex interplay between TRXs and other redox regulators such as glutaredoxins (GRXs) or glutathione. The latter is involved in a post-translational modification, named glutathionylation that could be controlled by GRXs. Glutathionylation appears to specifically affect the activity of TRX f and other chloroplastic enzymes and could thereby constitute a previously undescribed regulatory mechanism of photosynthetic metabolism under oxidative stress. After summarizing the initial studies on TRX f and TRX m, this review will focus on the most recent developments with special emphasis on the contributions of genomics and proteomics to the field of TRXs. Finally, new emerging interactions with other redox signaling pathways and perspectives for future studies will also be discussed.

Keywords

Proteomics, Chloroplasts, Glutathione, Models, Biological, Molecular Weight, Thioredoxins, GLUTATHIONE, Animals, Protein Isoforms, Oxidoreductases, Oxidation-Reduction, Sequence Alignment, Glutaredoxins, Metabolic Networks and Pathways, Plant Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    199
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
199
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!