
handle: 10316/112201
AbstractThis manuscript contains a small portion of the algebraic theory of orthogonal polynomials developed by Maroni and their applicability to the study and characterization of the classical families, namely Hermite, Laguerre, Jacobi, and Bessel polynomials. It is presented a cyclical proof of some of the most relevant characterizations, particularly those due to Al-Salam and Chihara, Bochner, Hahn, Maroni, and McCarthy. Two apparently new characterizations are also added. Moreover, it is proved through an equivalence relation that, up to constant factors and affine changes of variables, the four families of polynomials named above are the only families of classical orthogonal polynomials.
algebraic theory of orthogonal polynomials, Mathematics - Classical Analysis and ODEs, Moment linear functionals, Classical Analysis and ODEs (math.CA), FOS: Mathematics, 42C05, 33C45, classical orthogonal polynomials
algebraic theory of orthogonal polynomials, Mathematics - Classical Analysis and ODEs, Moment linear functionals, Classical Analysis and ODEs (math.CA), FOS: Mathematics, 42C05, 33C45, classical orthogonal polynomials
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
