
AbstractLet G be a finite connected graph. If x and y are vertices of G, one may define a distance function dG on G by letting dG(x, y) be the minimal length of any path between x and y in G (with dG(x, x) = 0). Thus, for example, dG(x, y) = 1 if and only if {x, y} is an edge of G. Furthermore, we define the distance matrix D(G) for G to be the square matrix with rows and columns indexed by the vertex set of G which has dG(x, y) as its (x, y) entry. In this paper we are concerned with properties of D(G) for the case in which G is a tree (i.e., G is acyclic). In particular, we precisely determine the coefficients of the characteristic polynomial of D(G). This determination is made by deriving surprisingly simple expressions for these coefficients as certain fixed linear combinations of the numbers of various subgraphs of G.
Mathematics(all), Eigenvalues, singular values, and eigenvectors, Trees
Mathematics(all), Eigenvalues, singular values, and eigenvectors, Trees
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 154 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
