
doi: 10.1007/bf03323232
By treating the periodic Riccati equation $${\rm\dot{z}=a(t)z^2+b(t)z+c(t)}$$ as a dynamical system on the sphere S, the number and stability of its periodic solutions are determined. Using properties of Moebius transformations, an exact algebraic relation is obtained between any periodic solution and any complex-valued periodic solution. This leads to a new method for constructing the periodic solutions.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
