Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2012
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
SeMA Journal
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A survey on direct solvers for Galerkin methods

Authors: Julen Alvarez; Nathan Collier; David Pardo; David Pardo; Maciej Paszyński; Lisandro Dalcin; Victor M. Calo;

A survey on direct solvers for Galerkin methods

Abstract

In this paper we describe the history, performance, and design concepts of direct solvers for algebraic systems resulting from Galerkin discretizations of partial differential equations. Popular direct solver implementations of Gaussian elimination (also known as LU factorization) are introduced and briefly analyzed. We discuss three of the most relevant aspects influencing the performance of direct solvers on this kind of algebraic systems. First, the ordering of the degrees of freedom of the algebraic system has a significant impact on the solver performance, solution speed and memory requirements. The impact of unknowns ordering for elimination is exemplified and alternative ordering algorithms are described and compared. Second, the effect of round-off error on the simulation results is discussed. We detail this effect for uniform grids where the impact of round-off error on the solution is controlled by the condition number of the matrix in terms of the element size, but is independent of the polynomial order of approximation. Additionally, we discuss the link between unknown ordering and round-off error. Third, we describe the impact of the connectivity pattern (graph) of the basis functions on the performance of direct solvers. Variations in the connectivity structure of the resulting discrete system have severe impact on performance of the solver. That is, the resources needed to factorize the system strongly depend on its connectivity graph. Less connected graphs are cheaper to solve, that is, C0 finite element discretizations are cheaper to solve with direct solvers than Cp−1 discretizations.

Countries
Argentina, Australia
Keywords

Frontal Solver, Cost of Regularity, 510, 004, Gaussian Elimination, Multi-Frontal Solver, Parallel Direct Solvers, Isogeometric Analysis, Hp-Finite Elements, https://purl.org/becyt/ford/1.1, Lu Factorization, https://purl.org/becyt/ford/1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green