
Les auteurs continuent leur précédente recherche [ibid. 12, No. 2, 309-326 (1995; Zbl 0842.35004)] sur la solution numérique de l'équation elliptique semilinéaire (1) \(-\Delta u= f(u)\) dans \(\Omega\), avec la condition (2) \(u=0\) sur \(\partial \Omega\), où \(\Omega\) est un domaine polygonal à deux dimension. Nous remarquons le théorème (1.1) sur la construction d'une succession, qui a une sous-succession convergente en \(H^1(\Omega) \cap L^\infty (\Omega)\) à une solution instable du problème (1)--(2), où \(H^1 (\Omega)= W^{1,2} (\Omega)\) est l'espace de Sobolev.
Variational methods for second-order elliptic equations, Nonlinear boundary value problems for linear elliptic equations, Lagrange multiplier, polygonal domain, Theoretical approximation in context of PDEs, uniform convergence of minimizing sequence, instable solution
Variational methods for second-order elliptic equations, Nonlinear boundary value problems for linear elliptic equations, Lagrange multiplier, polygonal domain, Theoretical approximation in context of PDEs, uniform convergence of minimizing sequence, instable solution
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
