<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This chapter describes the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations. But the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics. A computer which will give the same probabilities as the quantum system does. The present theory of physics allows space to go down into infinitesimal distances, wavelengths to get infinitely great, terms to be summed in infinite order, and so forth; and therefore, if this proposition is right, physical law is wrong. Quantum theory and quantizing is a very specific type of theory. The chapter talks about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature. There are interesting philosophical questions about reasoning, and relationship, observation, and measurement and so on, which computers have stimulated people to think about anew, with new types of thinking.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5K | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.01% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |