<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Instruction-level parallelism (ILP) is a family of processor and compiler design techniques that speed up execution by causing individual machine operations to execute in parallel. Although ILP has appeared in the highest performance uniprocessors for the past 30 years, the 1980s saw it become a much more significant force in computer design. Several systems were built and sold commercially, which pushed ILP far beyond where it had been before, both in terms of the amount of ILP offered and in the central role ILP played in the design of the system. By the end of the decade, advanced microprocessor design at all major CPU manufacturers had incorporated ILP, and new techniques for ILP had become a popular topic at academic conferences. This article provides an overview and historical perspective of the field of ILP and its development over the past three decades.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 222 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |