Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Theoretical Physics
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1995
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Minimal orthomodular lattices

Authors: Carrega, J. C.;

Minimal orthomodular lattices

Abstract

For two classes of algebras \(C_2\subseteq C_1\) (minimal) exclusion systems \(\Sigma\subseteq C_1- C_2\) are discussed, for \(C_1\): all orthomodular lattices OML, \(C_2\): all modular ortholattices. A negative answer is given to the question of a finite \(\Sigma\) consisting of finite OML: Every such \(\Sigma\) contains an infinite OML. A minimal OML is a finite nonmodular OML with all proper sub-OML being modular. A characterization of these minimal OML \(T\) is given. Consider the irreducible \(T\) and the equational classes \([T]\) generated by \(T\): Every \([T]\) covers some \([\text{MO}_n]\), \(n\geq 2\), and for fixed \(n\) only finitely many such classes \([T]\) cover \([\text{MO}_n]\). Two such classes \([T]\), \([T']\) are incomparable whenever \(T\), \(T'\) are nonisomorphic.

Keywords

Complemented lattices, orthocomplemented lattices and posets, exclusion systems, orthomodular lattices, modular ortholattices

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!