Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oecologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 1990 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Patch use by Dipodomys deserti (Rodentia: Heteromyidae): profitability, preference, and depletion dynamics

Authors: Robert H, Podolsky; Mary V, Price;

Patch use by Dipodomys deserti (Rodentia: Heteromyidae): profitability, preference, and depletion dynamics

Abstract

Granivorous desert rodents of the family Heteromyidae forage nonrandomly among "microhabitats" that vary in substrate, seed densities, and seed species composition. To explore the hypothesis that microhabitat use is sensitive to seed patch profitability, we quantified effects of seed size (1.96 vs. 5.21 mg/seed) and density (0.4-10.6 seeds/cm2) on Dipodomys deserti harvest rates, which is a measure of profitability when expressed as mg of seed taken per min. By manipulating seed density, we created large-seed and small-seed patches of known relative profitability and exposed D. deserti individuals to pairwise choices in the laboratory and field. We used three treatment classes: 1) large-seed patches that were more profitable than small-seed patches (equal seed densities); 2) large-seed and small-seed patches that were equally profitable (small-seed densities somewhat higher): and 3) large-seed patches that were less profitable than small-seed patches (small-seed densities much higher). Harvest rate increased nearly linearly with seed density, and profitability of large-seed patches was greater than small-seed patches of the same density. Cumulative harvest from a patch increased linearly with residence time up to a plateau; this "gain curve" indicates that animals move systematically within patches and hence avoid resampling already depleted areas. In the laboratory, animals visited small-seed patches first more often and visited them more frequently when they were more profitable than large-seed patches. When large-seed patches were of greater or equal profitability, large-seed patches were preferred by both measures. The expressed preference for large-seed patches, when animals were presented with equally profitable patches, suggests an underlying preference for large seeds. In the field, animals depleted all patches to a constant low profitability, in accord with qualitative predictions of optimal patch use models. These results suggest that patch preferences by D. deserti are affected by the economics of seed harvest.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!