
The cross-validation of principal components is a problem that occurs in many applications of statistics. The naive approach of omitting each observation in turn and repeating the principal component calculations is computationally costly. In this paper we present an efficient approach to leave-one-out cross-validation of principal components. This approach exploits the regular nature of leave-one-out principal component eigenvalue downdating. We derive influence statistics and consider the application to principal component regression.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
