<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We can now begin the rigorous treatment of calculus in earnest, starting with the notion of a derivative. We can now define derivatives analytically, using limits, in contrast to the geometric definition of derivatives, which uses tangents. The advantage of working analytically is that (a) we do not need to know the axioms of geometry, and (b) these definitions can be modified to handle functions of several variables, or functions whose values are vectors instead of scalar. Furthermore, one’s geometric intuition becomes difficult to rely on once one has more than three dimensions in play. (Conversely, one can use one’s experience in analytic rigour to extend one’s geometric intuition to such abstract settings; as mentioned earlier, the two viewpoints complement rather than oppose each other.)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |