
Relational learning refers to learning from data that have a complex structure. This structure may be either internal (a data instance may itself have a complex structure) or external (relationships between this instance and other data elements). Statistical relational learning refers to the use of statistical learning methods in a relational learning context, and the challenges involved in that. In this chapter we give an overview of statistical relational learning. We start with some motivating problems, and continue with a general description of the task of (statistical) relational learning and some of its more concrete forms (learning from graphs, learning from logical interpretations, learning from relational databases). Next, we discuss a number of approaches to relational learning, starting with symbolic (non-probabilistic) approaches, and moving on to numerical and probabilistic methods. Methods discussed include inductive logic programming, relational neural networks, and probabilistic logical or relational models
machine learning, statistical relational learning, data mining, neural information processing
machine learning, statistical relational learning, data mining, neural information processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
