
Bent functions are maximally nonlinear Boolean functions with an even number of variables. These combinatorial objects, with fascinating properties, are rare. The class of bent functions contains a subclass of functions the so-called hyper-bent functions whose properties are still stronger and whose elements are still rarer. In fact, hyper-bent functions seem still more difficult to generate at random than bent functions and many problems related to the class of hyper-bent functions remain open. (Hyper)-bent functions are not classified. A complete classification of these functions is elusive and looks hopeless. In this paper, we contribute to the knowledge of the class of hyper-bent functions on finite fields F2n (where n is even) by studying a subclass Fn of the so-called Partial Spreads class PS- (such functions are not yet classified, even in the monomial case). Functions of Fn have a general form with multiple trace terms. We describe the hyper-bent functions of Fn and we show that the bentness of those functions is related to the Dickson polynomials. In particular, the link between the Dillon monomial hyper-bent functions of Fn and the zeros of some Kloosterman sums has been generalized to a link between hyper-bent functions of Fn and some exponential sums where Dickson polynomials are involved. Moreover, we provide a possibly new infinite family of hyper-bent functions. Our study extends recent works of the author and is a complement of a recent work of Charpin and Gong on this topic.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
