Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
u:cris
Conference object . 2009
Data sources: u:cris
versions View all 3 versions
addClaim

Non-splitting Tridiagonalization of Complex Symmetric Matrices

Authors: Wilfried N. Gansterer; Andreas R. Gruber; Christoph Pacher;

Non-splitting Tridiagonalization of Complex Symmetric Matrices

Abstract

A non-splitting method for tridiagonalizing complex symmetric (non-Hermitian) matrices is developed and analyzed. The main objective is to exploit the purely structural symmetry in terms of runtime performance. Based on the analytical derivation of the method, Fortran implementations of a blocked variant are developed and extensively evaluated experimentally. In particular, it is illustrated that a straightforward implementation based on the analytical derivation exhibits deficiencies in terms of numerical properties. Nevertheless, it is also shown that the blocked non-splitting method shows very promising results in terms of runtime performance. On average, a speed-up of more than three is achieved over competing methods. Although more work is needed to improve the numerical properties of the non-splitting tridiagonalization method, the runtime performance achieved with this non-unitary tridiagonalization process is very encouraging and indicates important research directions for this class of eigenproblems.

Country
Austria
Related Organizations
Keywords

101014 Numerical mathematics, 102023 Supercomputing, 101014 Numerische Mathematik

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze
Beta
sdg_colorsSDGs:
Related to Research communities