
A non-splitting method for tridiagonalizing complex symmetric (non-Hermitian) matrices is developed and analyzed. The main objective is to exploit the purely structural symmetry in terms of runtime performance. Based on the analytical derivation of the method, Fortran implementations of a blocked variant are developed and extensively evaluated experimentally. In particular, it is illustrated that a straightforward implementation based on the analytical derivation exhibits deficiencies in terms of numerical properties. Nevertheless, it is also shown that the blocked non-splitting method shows very promising results in terms of runtime performance. On average, a speed-up of more than three is achieved over competing methods. Although more work is needed to improve the numerical properties of the non-splitting tridiagonalization method, the runtime performance achieved with this non-unitary tridiagonalization process is very encouraging and indicates important research directions for this class of eigenproblems.
101014 Numerical mathematics, 102023 Supercomputing, 101014 Numerische Mathematik
101014 Numerical mathematics, 102023 Supercomputing, 101014 Numerische Mathematik
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
