<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The simple max-cut problem is as follows: given a graph, find a partition of its vertex set into two disjoint sets, such that the number of edges having one endpoint in each set is as large as possible. A split graph is a graph whose vertex set admits a partition into a stable set and a clique. The simple max-cut decision problem is known to be NP-complete for split graphs. An indifference graph is the intersection graph of a set of unit intervals of the real line. We show that the simple max-cut problem can be solved in linear time for a graph that is both split and indifference. Moreover, we also show that for each constant q, the simple max-cut problem can be solved in polynomial time for (q,q-4)-graphs. These are graphs for which no set of at most q vertices induces more than q-4 distinct P 4’s.
Wiskunde en Informatica (WIIN)
Wiskunde en Informatica (WIIN)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |