
In recent years, dense trajectories have shown to be an efficient representation for action recognition and have achieved state-of-the-art results on a variety of increasingly difficult datasets. However, while the features have greatly improved the recognition scores, the training process and machine learning used hasn’t in general deviated from the object recognition based SVM approach. This is despite the increase in quantity and complexity of the features used. This paper improves the performance of action recognition through two data mining techniques, APriori association rule mining and Contrast Set Mining. These techniques are ideally suited to action recognition and in particular, dense trajectory features as they can utilise the large amounts of data, to identify far shorter discriminative subsets of features called rules. Experimental results on one of the most challenging datasets, Hollywood2 outperforms the current state-of-the-art.
006
006
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
