
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 28417375
Microorganisms play a primary role in regulating biogeochemical cycles and are a valuable source of enzymes that have biotechnological applications, such as carbohydrate-active enzymes (CAZymes). However, the inability to culture the majority of microorganisms that exist in natural ecosystems using common culture-dependent techniques restricts access to potentially novel cellulolytic bacteria and beneficial enzymes. The development of molecular-based culture-independent methods such as metagenomics enables researchers to study microbial communities directly from environmental samples, and presents a platform from which enzymes of interest can be sourced. We outline key methodological stages that are required as well as describe specific protocols that are currently used for metagenomic projects dedicated to CAZyme discovery.
570, Glycoside Hydrolases, Assembly, Carbohydrate active enzymes, Binning, Microbial communities, Plants, Enzymes, Carbohydrate Metabolism, Metagenomics, Cellulose, Algorithms
570, Glycoside Hydrolases, Assembly, Carbohydrate active enzymes, Binning, Microbial communities, Plants, Enzymes, Carbohydrate Metabolism, Metagenomics, Cellulose, Algorithms
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
