Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Halarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Part of book or chapter of book . 1994
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hyper Article en Ligne
Part of book or chapter of book . 1994
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1994 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Small-Angle X-Ray Scattering

Authors: Renouprez, A.J.;

Small-Angle X-Ray Scattering

Abstract

Small-angle X-ray scattering (SAXS) was discovered in 1938 by A. Guinier.(1) It is now a powerful method for characterizing catalysts (particle size, surface area) and disordered materials such as gels, sols, defective alloys, porous oxides or carbons, polymers. Like diffraction, SAXS is a coherent scattering phenomenon, but instead of being produced by the interference of waves scattered by atoms ordered inside a unit cell smaller than 20 A, SAXS originates from the interference between larger blocks of uniform matter whose diameters are typically 20 to 1000 A. Then, since direct and reciprocal space are related by Fourier transforms, the normal diffraction is observed at large angles (Sin 2θ/λ = 0.1 to 1.5 A−1), SAXS is limited to a narrow cone near the origin (< 0.1 A−1). It is easily understood, from the very nature of this diffraction phenomenon, that its interpretation will be straightforward for a two-phase system, with uniform density in each phase, but much more intricate for multicomponent catalysts. In this case complementary information (electron microscopy, gas adsorption) will be indispensable for interpretation of the scattering data.

Keywords

[CHIM.CATA] Chemical Sciences/Catalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!