Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://oar.icrisat.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://oar.icrisat.org/7589/1/...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2013 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advances in Pigeonpea Genomics

Authors: Bohra, A; Saxena, R K; Saxena, K B; Sameer Kumar, C V; Varshney, R K;

Advances in Pigeonpea Genomics

Abstract

Pigeonpea, a member of family Fabaceae, is one of the important food legumes cultivated in tropical and subtropical regions. Due to its inherent properties to withstand harsh environments, it plays a critical role in ensuring sustainability in the subsistence agriculture. Furthermore, plasticity in the maturity duration imparts it a greater adaptability in a variety of cropping systems. In the post genomics era, the importance of pigeonpea is further evident from the fact that pigeonpea has emerged as first non-industrial legume crop for which the whole genome sequence has been completed. It revealed 605.78 Mb of assembled and anchored sequence as against the predicted 833 Mb genome consequently representing 72.8 % of the whole genome. In order to perform genetic and genomic analysis various molecular markers like random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR), diversity array technology (DArT), single feature polymorphism (SFP), and single nucleotide polymorphism (SNP) were employed. So far four transcriptome assemblies have been constructed and different sets of EST-SSRs were developed and validated in a panel of diverse pigeonpea genotypes. Extensive survey of BAC-end sequences (BESs) provided 3,072 BES-SSRs and all these BES-SSRs were further used for linkage analysis and trait mapping. To make the available linkage information more useful, six intra-specific genetic maps were joined together into a single consensus genetic map providing map positions to a total of 339 SSR markers at map coverage of 1,059 cM. However, earlier very few linkage maps were available in the crop because of non-availability of genomic resources. Several quantitative trait loci (QTLs) associated with traits of agronomic interest including QTLs for sterility mosaic disease, fertility restoration, plant type and earliness have been identified and validated. To strengthen the traditional breeding, plenty of genomics ...

Countries
Australia, India
Keywords

580, Pigeonpea, 570, Genetics and Genomics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average