
pmid: 36083449
Interpreting phylogenetic trees requires a root, which provides the direction of evolution and polarizes ancestor-descendant relationships. But inferring the root using genetic data is difficult, particularly in cases where the closest available outgroup is only distantly related, which are common for microbes. In this chapter, we present a workflow for estimating rooted species trees and the evolutionary history of the gene families that evolve within them using probabilistic gene tree-species tree reconciliation. We illustrate the pipeline using a small dataset of prokaryotic genomes, for which the example scripts can be run using modest computer resources. We describe the rooting method used in this work in the context or other rooting strategies and discuss some of the limitations and opportunities presented by probabilistic gene tree-species tree reconciliation methods.
Evolution, Molecular, Genome, Models, Genetic, Prokaryotic Cells, Algorithms, Phylogeny
Evolution, Molecular, Genome, Models, Genetic, Prokaryotic Cells, Algorithms, Phylogeny
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
