Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genomic Selection in Aquaculture Species

Authors: François, Allal; Nguyen Hong, Nguyen;

Genomic Selection in Aquaculture Species

Abstract

To date, genomic prediction has been conducted in about 20 aquaculture species, with a preference for intra-family genomic selection (GS). For every trait under GS, the increase in accuracy obtained by genomic estimated breeding values instead of classical pedigree-based estimation of breeding values is very important in aquaculture species ranging from 15% to 89% for growth traits, and from 0% to 567% for disease resistance. Although the implementation of GS in aquaculture is of little additional investment in breeding programs already implementing sib testing on pedigree, the deployment of GS remains sparse, but could be boosted by adaptation of cost-effective imputation from low-density panels. Moreover, GS could help to anticipate the effect of climate change by improving sustainability-related traits such as production yield (e.g., carcass or fillet yields), feed efficiency or disease resistance, and by improving resistance to environmental variation (tolerance to temperature or salinity variation). This chapter synthesized the literature in applications of GS in finfish, crustaceans and molluscs aquaculture in the present and future breeding programs.

Keywords

Genome, Genotype, Models, Genetic, Aquaculture, Genomics, Polymorphism, Single Nucleotide, Phenotype, Humans, Selection, Genetic, Disease Resistance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!