
We prove that a quantum circuit together with measurement apparatuses and EPR sources can be fully verified without any reference to some other trusted set of quantum devices. Our main assumption is that the physical system we are working with consists of several identifiable sub-systems, on which we can apply some given gates locally. To achieve our goal we define the notions of simulation and equivalence. The concept of simulation refers to producing the correct probabilities when measuring physical systems. To enable the efficient testing of the composition of quantum operations, we introduce the notion of equivalence. Unlike simulation, which refers to measured quantities (i.e., probabilities of outcomes), equivalence relates mathematical objects like states, subspaces or gates. Using these two concepts, we prove that if a system satisfies some simulation conditions, then it is equivalent to the one it is purposed to implement. In addition, with our formalism, we can show that these statements are robust, and the degree of robustness can be made explicit (unlike the robustness results of [DMMS00]). In particular, we also prove the robustness of the EPR Test [MY98]. Finally, we design a test for any quantum circuit whose complexity is linear in the number of gates and qubits, and polynomial in the required precision.
22 pages, 1 figure
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
