
doi: 10.1007/11430919_68
In this paper we present a novel and general framework based on concepts of relational algebra for kernel-based learning over relational schema. We exploit the notion of foreign keys to define a new attribute that we call instance-set and we use this type of attribute to define a tree like structured representation of the learning instances. We define kernel functions over relational schemata which are instances of $\Re$-Convolution kernels and use them as a basis for a relational instance-based learning algorithm. These kernels can be considered as being defined over typed and unordered trees where elementary kernels are used to compute the graded similarity between nodes. We investigate their formal properties and evaluate the performance of the relational instance-based algorithm on a number of relational data sets.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
