<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1007/10_2013_206
pmid: 23728162
Bioethanol is currently produced by the fermentation of sugary and starchy crops, but waste plant biomass is a more abundant source because sugars can be derived directly from cellulose. One of the limiting steps in the biomass-to-ethanol process is the degradation of cellulose to fermentable sugars (saccharification). This currently relies on the use of bacterial and/or fungal cellulases, which tend to have low activity under biorefinery conditions and are easily inhibited. Some insect species feed on plant biomass and can efficiently degrade cellulose to produce glucose as an energy source. Although insects were initially thought to require symbiotic relationships with bacteria and fungi to break down cellulose, several species in the orders Dictyoptera, Orthoptera, and Coleoptera have now been shown to produce their own cellulases in the midgut or salivary glands, and putative cellulase genes have been identified in other orders. Insect cellulases often work in concert with cellulases provided by symbiotic microbiota in the gut to achieve efficient cellulolysis. We discuss the current status of insect cellulases and potential strategies that could be used to find novel enzymes and improve their efficiency.
Animals, Genetically Modified, Genetic Enhancement, Insecta, Animals, Cellulases, Cellulose
Animals, Genetically Modified, Genetic Enhancement, Insecta, Animals, Cellulases, Cellulose
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |