Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wildlife Society Bul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wildlife Society Bulletin
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wildlife Society Bulletin
Article . 2016
Data sources: DOAJ
versions View all 2 versions
addClaim

Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores

Authors: Jennifer R. B. Miller; Kelly J. Stoner; Mikael R. Cejtin; Tara K. Meyer; Arthur D. Middleton; Oswald J. Schmitz;

Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores

Abstract

ABSTRACT Mitigation of large carnivore depredation is essential to increasing stakeholder support for human–carnivore coexistence. Lethal and non‐lethal techniques are implemented by managers, livestock producers, and other stakeholders to reduce livestock depredations by large carnivores. However, information regarding the relative effectiveness of techniques commonly used to reduce livestock depredations is currently lacking. We evaluated 66 published, peer‐reviewed research papers that quantitatively measured livestock depredation before and after employing 4 categories of lethal and non‐lethal mitigation techniques (livestock husbandry, predator deterrents and removal, and indirect management of land or wild prey) to assess their relative effectiveness as livestock protection strategies. Effectiveness of each technique was measured as the reported percent change in livestock losses. Husbandry (42–100% effective) and deterrents (0–100% effective) demonstrated the greatest potential but also the widest variability in effectiveness in reducing livestock losses. Removal of large carnivores never achieved 100% effectiveness but exhibited the lowest variation (67–83%). Although explicit measures of effectiveness were not reported for indirect management, livestock depredations commonly decreased with sparser and greater distances from vegetation cover, at greater distances from protected areas, and in areas with greater wild prey abundance. Information on time duration of effects was available only for deterrents; a tradeoff existed between the effectiveness of tools and the length of time a tool remained effective. Our assessment revealed numerous sources of bias regarding the effectiveness of techniques as reported in the peer‐reviewed literature, including a lack of replication across species and geographic regions, a focus on Canid carnivores in the United States, Europe, and Africa, and a publication bias toward studies reporting positive effects. Given these limitations, we encourage managers and conservationists to work with livestock producers to more consistently and quantitatively measure and report the impacts of mitigation techniques under a wider range of environmental, economic, and sociological conditions. © 2016 The Wildlife Society.

Related Organizations
Keywords

human–wildlife conflict, lethal control, large carnivore conservation, General. Including nature conservation, geographical distribution, human–carnivore coexistence, QH1-199.5, non‐lethal management

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 1%
Top 10%
Top 10%
gold