Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Statistics in Medici...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Statistics in Medicine
Article . 1993 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A bivariate approach to meta‐analysis

Authors: Theo Stijnen; Koos H. Zwinderman; Hans C. van Houwelingen;

A bivariate approach to meta‐analysis

Abstract

AbstractThe usual meta‐analysis of a sequence of randomized clinical trials only considers the difference between two treatments and produces a point estimate and a confidence interval for a parameter that measures this difference. The usual parameter is the log)odds ratio( linked to Mantel–Haenszel methodology. Inference is made either under the assumption of homogeneity or in a random effects model that takes account of heterogeneity between trials. This paper has two goals. The first is to present a likelihood based method for the estimation of the parameters in the random effects model, which avoids the use of approximating Normal distributions. The second goal is to extend this method to a bivariate random effects model, in which the effects in both groups are supposed random. In this way inference can be made about the relationship between improvement and baseline effect. The method is demonstrated by a meta‐analysis dataset of Collins and Langman.

Related Organizations
Keywords

Analysis of Variance, Likelihood Functions, Models, Statistical, Peptic Ulcer Hemorrhage, Histamine H2 Antagonists, Meta-Analysis as Topic, Data Interpretation, Statistical, Confidence Intervals, Odds Ratio, Humans, Randomized Controlled Trials as Topic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    286
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
286
Top 1%
Top 0.1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?