
doi: 10.1002/nme.2445
handle: 11585/65555
AbstractThis paper describes a method of performing the integration of generalized plasticity models, in which, unlike classical elastoplasticity, the yield surface is not explicitly defined. The algorithm is based on a generalized midpoint scheme and is applied to a specific generalized plasticity model for sands, in which a hyperelastic formulation is introduced to describe the reversible component of the soil response instead of the hypoelastic approach originally proposed. In this way, an efficient integration scheme is developed in the elastic strain space. The consistent, algorithmic tangent operator is derived. Isoerror maps are generated to study the local accuracy of the numerical integration algorithm. Results from a series of numerical examples based on the simulation of drained triaxial tests are given to illustrate the accuracy and convergence properties of the algorithm, both at the local and at the global level. Finally an example is given of the simulation of a cyclic triaxial test to illustrate the improvement on accuracy caused by the use of a hyperelastic law into the constitutive equations, as opposed to the hypoelastic formulation initially adopted in the model. Copyright © 2008 John Wiley & Sons, Ltd.
NUMERICAL INTEGRATION; IMPLICIT ALGORITHM; SOIL MODEL, soil model, Finite element methods applied to problems in solid mechanics, Large-strain, rate-independent theories of plasticity (including nonlinear plasticity), Soil and rock mechanics, numerical integration, implicit algorithm
NUMERICAL INTEGRATION; IMPLICIT ALGORITHM; SOIL MODEL, soil model, Finite element methods applied to problems in solid mechanics, Large-strain, rate-independent theories of plasticity (including nonlinear plasticity), Soil and rock mechanics, numerical integration, implicit algorithm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
