
The von Neumann hierarchy of sets is heavily used as a basic tool in classical set theory, being an underlying ingredient in many proofs and concepts. In constructive set theories like without the powerset axiom however, it loses much of its potency by ceasing to be a hierarchy of sets as its single stages become only classes. This article proposes an alternative cumulative hierarchy which does not have this drawback and provides examples of how it can be used to prove new theorems in .
Nonclassical and second-order set theories, Other constructive mathematics
Nonclassical and second-order set theories, Other constructive mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
