Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Science of Food and Agriculture
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin

Degradation of phytate by microbial and wheat phytases
Authors: Brejnholt, Sarah M; Dionisio, Giuseppe; Glitsoe, Vibe; Skov, Lars K; Brinch-Pedersen, Henrik;

The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin

Abstract

Phytases increase utilization of phytate phosphorus in feed. Since wheat is rich in endogenous phytase activity it was examined whether wheat phytases could improve phytate degradation compared to microbial phytases. Moreover, it was investigated whether enzymatic degradation of phytate is influenced by the matrix surrounding it. Phytate degradation was defined as the decrease in the sum of InsP₆ + InsP₅.Endogenous wheat phytase effectively degraded wheat Ins₆ + InsP₅ at pH 4 and pH 5, while this was not true for a recombinant wheat phytase or phytase extracted from wheat bran. Only microbial phytases were able to degrade InsP₆ + InsP₅ in the entire pH range from 3 to 5, which is relevant for feed applications. A microbial phytase was efficient towards InsP₆ + InsP₅ in different phytate samples, whereas the ability to degrade InsP₆ + InsP₅ in the different phytate samples ranged from 12% to 70% for the recombinant wheat phytase.Wheat phytase appeared to have an interesting potential. However, the wheat phytases studied could not improve phytate degradation compared to microbial phytases. The ability to degrade phytate in different phytate samples varied greatly for some phytases, indicating that phytase efficacy may be affected by the phytate matrix.

Related Organizations
Keywords

6-Phytase, inositol phosphate, Phytic Acid, Inositol phosphate, wheat phytase, Bacillus, Hydrogen-Ion Concentration, Phytate, Animal Feed, Recombinant Proteins, microbial phytase, Seeds, Phosphorus, Dietary, Triticum, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!