
arXiv: 0905.0064
AbstractGiven a connected graph, in many cases it is possible to construct a structure tree that provides information about the ends of the graph or its connectivity. For example Stallings' theorem on the structure of groups with more than one end can be proved by analyzing the action of the group on a structure tree and Tutte used a structure tree to investigate finite 2‐connected graphs, that are not 3‐connected. Most of these structure tree theories have been based on edge cuts, which are components of the graph obtained by removing finitely many edges. A new axiomatic theory is described here using vertex cuts, components of the graph obtained by removing finitely many vertices. This generalizes Tutte's decomposition of 2‐connected graphs to k‐connected graphs for any k, in finite and infinite graphs. The theory can be applied to nonlocally finite graphs with more than one vertex end, i.e. ends that can be separated by removing a finite number of vertices. This gives a decomposition for a group acting on such a graph, generalizing Stallings' theorem. Further applications include the classification of distance transitive graphs and k‐CS‐transitive graphs.
Connectivity, FOS: Mathematics, connectivity of graphs, structure trees, Mathematics - Combinatorics, Group Theory (math.GR), Combinatorics (math.CO), 20E08, 05C40, 57M07, Mathematics - Group Theory, Trees
Connectivity, FOS: Mathematics, connectivity of graphs, structure trees, Mathematics - Combinatorics, Group Theory (math.GR), Combinatorics (math.CO), 20E08, 05C40, 57M07, Mathematics - Group Theory, Trees
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
