
doi: 10.1002/jgt.20275
AbstractIn this article, the δ‐hyperbolic concept, originally developed for infinite graphs, is adapted to very large but finite graphs. Such graphs can indeed exhibit properties typical of negatively curved spaces, yet the traditional δ‐hyperbolic concept, which requires existence of an upper bound on the fatness δ of the geodesic triangles, is unable to capture those properties, as any finite graph has finite δ. Here the idea is to scale δ relative to the diameter of the geodesic triangles and use the Cartan–Alexandrov–Toponogov (CAT) theory to derive the thresholding value of δdiam below which the geometry has negative curvature properties. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 157–180, 2008
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
