
doi: 10.1002/jgt.10057
AbstractWe extend Whitney's Theorem that every plane triangulation without separating triangles is hamiltonian by allowing some separating triangles. More precisely, we define a decomposition of a plane triangulation G into 4‐connected ‘pieces,’ and show that if each piece shares a triangle with at most three other pieces then G is hamiltonian. We provide an example to show that our hypothesis that each piece shares a triangle with at most three other pieces' cannot be weakened to ‘four other pieces.’ As part of our proof, we also obtain new results on Tutte cycles through specified vertices in planar graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 138–150, 2002
Eulerian and Hamiltonian graphs, Hamilton cycle, Tutte cycle, plane triangulation, Paths and cycles
Eulerian and Hamiltonian graphs, Hamilton cycle, Tutte cycle, plane triangulation, Paths and cycles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
