Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecology
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
Ecology
Article . 2023
versions View all 2 versions
addClaim

Estimating phenology and phenological shifts with hierarchical modeling

Authors: Samantha M. Wilson; Joseph H. Anderson; Eric J. Ward;

Estimating phenology and phenological shifts with hierarchical modeling

Abstract

AbstractClimate‐driven changes to phenology are some of the most prevalent climate change impacts, yet there is no commonly accepted approach to modeling phenological shifts. Here, we present a hierarchical modeling framework for estimating intra‐annual patterns in phenology (e.g., peak phenological expression) and analyzing interannual rates of change in peak phenology. Our approach allows for the estimation of multiple sources of uncertainty, including observation error (e.g., imperfect observations of intra‐annual patterns in phenology like peak flowering date) and variation in phenological processes (e.g., uncertainty in the rate of change in annual peak phenological expression). Covariates may be included as predictors of annual peaks or interannual variability in phenological responses. We demonstrate the use of our hierarchical modeling framework in two migratory species—juvenile chum salmon and Swainson's thrush. We acknowledge that the complexity of hierarchical models can be difficult to implement from scratch and present an R package that can be used to model peak dates and range (number of days between 25th‐ and 75th‐quartile dates), as well as a rate of change in peak phenology. Increasing precision, calculating uncertainty, and allowing for imperfect data sets when estimating phenological shifts should help ecologists understand how organisms respond to climate change.

Keywords

Time Factors, Reproduction, Climate Change, Temperature, Seasons

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid