
doi: 10.1002/ecy.3285
pmid: 33462847
AbstractRevitalizing our understanding of species distributions and assembly in community ecology requires greater use of functional (physiological) approaches based on quantifiable factors such as energetics. Here, we explore niche partitioning between bumble and honey bees by comparing a measure of within‐patch foraging efficiency, the ratio of flower visitation rate (proportional to energy gain) to body mass (energy cost). This explained a remarkable 74% of the variation in the proportions of bumble to honey bees across 22 plant species and was confirmed using detailed energy calculations. Bumble bees visited flowers at a greater rate (realizing greater energy benefits) than honey bees, but were heavier (incurring greater energy costs) and predominated only on plant species where their benefit : cost ratio was higher than for honey bees. Importantly, the competition between honey bees and bumble bees had no consistent winner, thus highlighting the importance of plant diversity to the coexistence of competing bees. By contrast, tongue : corolla‐tube‐length ratio explained only 7% of the variation (non‐significant). Our results confirm the importance of energetics in understanding community ecology and bee foraging niche and highlight the energetic tightrope navigated by foraging bees, since approximately half the nectar energy gained was expended in its collection.
Ecology, Plant Nectar, Animals, Flowers, Bees, Plants, Pollination
Ecology, Plant Nectar, Animals, Flowers, Bees, Plants, Pollination
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
