
doi: 10.1002/aic.15275
Centrifugal intensification of condensation heat transfer in the rotor–stator cavities of a stator–rotor–stator spinning disc reactor (srs‐SDR) is studied, as a function of rotational velocity ω, volumetric throughflow rate , and average temperature driving force . For the current range of ω, heat transfer from the vapor bubbles to the condensate liquid is limiting, due to a relatively low gas–liquid interfacial area aGL. For rad s−1, a strong increase of aGL, results in increasing the reactor‐average condensation heat transfer coefficient hc from 1600 to 5600 W m−2 K−1, for condensation of pure dichloromethane vapor. Condensation heat transfer in the srs‐SDR is enhanced by rotation, independent of the vapor velocity. The intensified condensation comes at the cost of relatively high energy dissipation rates, indicating condensation in the srs‐SDR is more suited as a means to supply heat (e.g. in an intensified reactor‐heat exchanger), rather than for bulk cooling purposes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3784–3796, 2016
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
