Powered by OpenAIRE graph
Found an issue? Give us feedback

TU/e

Eindhoven University of Technology
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
844 Projects, page 1 of 169
  • Funder: European Commission Project Code: 844872
    Overall Budget: 175,572 EURFunder Contribution: 175,572 EUR

    Many supramolecular systems have been inspired by nature, but the number of supramolecular systems that are truly functional in water at the low concentrations required for biomolecular studies are very limited. Cucurbiturils are one of a few select supramolecular systems that show great promise for the modulation of protein assemblies in biologically relevant media, but they require better means to control homo- and heterodimerization. In order to effect strong and selective heterodimerization I will design and synthesize a wide range of complementary guest pairs, using chemical and electronic concepts such as π-π stacking and electronic donor−acceptor pairs. After testing these on the cucurbituril host-guest system, they will be assessed on heterodimeric protein assemblies such as split luciferase. As many biological processes require multimeric protein assemblies, I will develop novel supramolecular constructs to gain control over the formation of such assemblies. By constructing protein-coupled cucurbiturils and developing novel double cucurbituril systems, trimeric and tetrameric protein assemblies will be assessable. Development of these advanced supramolecular tools is crucial in order to access synthetic signaling platforms with potential for molecular diagnostics.

    more_vert
  • Funder: European Commission Project Code: 101054459
    Overall Budget: 2,499,480 EURFunder Contribution: 2,499,480 EUR

    This proposal is on modelling of 3 phase gas-solid-liquid multi-component flows with catalyst particles, which are frequently encountered in industrial applications, but have not been tackled fundamentally before due to their complexity. Dense multi-phase flows have been intensively researched because of their scientifically interesting transport phenomena and industrial applications. Considerable progress has been made for gas-solid and gas-liquid two-phase flows. However, catalytic multicomponent three-phase flows have received relatively little attention despite their importance for the production of clean synthetic fuels, base chemicals, and many other products. Multiphase transport phenomena in such systems are poorly understood due to their complexity. Therefore the design of processes is cumbersome. In addition, the process operation is often far from optimal in terms of energy and feedstock utilization. Therefore significant improvements are required to boost the efficiency of three-phase systems, which demands for a better understanding of the transport fundamentals and complex interplay with chemical reactions and availability of predictive tools. The main underlying problem is the wide range of length scales: suspended catalyst particles have a size of 100-200 μm, whereas the diameter of industrial reactors is 5-10 meters. To tackle this problem a multi-scale modeling strategy is required. At the finest scale detailed models take into account the interaction between the phases. These interactions are condensed in closure laws for mass, momentum and heat exchange that feed so-called Euler-Lagrange models, which can then be used to compute the flow structures on a much larger (industrial) scale. The key innovative aspect of this proposal is the integrated approach including incorporation of multi-component chemical transformations and the validation on basis of one-to-one comparison of the of the computational results with experiments.

    more_vert
  • Funder: Swiss National Science Foundation Project Code: 214226
    Funder Contribution: 76,000
    more_vert
  • Funder: European Commission Project Code: 793677
    Overall Budget: 177,599 EURFunder Contribution: 177,599 EUR

    Recently, visible light photoredox catalysis has come to the focal point of the organic synthetic field and holds promise to use solar irradiation to establish important chemical bonds in the synthesis of complex organic molecules. However, most reports thus far use transition metal complexes based on rare and expensive iridium and ruthenium. In this Marie Curie proposal, metal oxide semiconductors (MOS) will be applied as abundant and cheap visible light photocatalysts to establish C-C and C-N linkages in organic molecules in batch and photomicroflow reactors. To extend their absorption to the visible light range, I will study the formation of so-called ligand-to-metal charge transfer (LMCT) complexes with different adsorbates/ligands covalently linked to the surface of the MOS. The effect of linkers, ligands, different organic solvents, concentrations, as well as reaction times will be studied in the formation of these complexes. The LMCT complexes will be fully characterized with spectroscopic techniques. Next, these new photocatalysts will be evaluated in valuable C-C and C-N forming organic reactions. Furthermore, mechanistic studies will be carried out to aid the discovery process and to further optimize the photocatalysts. Finally, the reactions will be carried out in continuous-flow reactors to increase the efficiency of the photocatalytic transformation. Hereto, a slurry Taylor flow regime will be used and a recycling strategy will be developed to efficiently reuse the photocatalyst. We will also use so-called Luminescent Solar Concentrator PhotoMicroreactors (LSC-PM) to enable the use of solar energy. During this fellowship, I aim to strengthen both my scientific and soft skills required to start an independent researcher career. In addition, I intend to expand my scientific network by starting collaborations with leading experts in both academia and industry.

    more_vert
  • Funder: European Commission Project Code: 101100873
    Funder Contribution: 150,000 EUR

    In the last decade, super-resolution microscopy techniques have emerged as powerful quantitative tools for biology. They have capabilities to visualize single molecules at the nanoscale opening the door to study biological processes at a level not accessible before. In the ERC StG NANOSTORM we showed the potential of these techniques providing new fundamental knowledge on the mechanism and design of new targeted therapies. However, some of the methods we developed have the potential to be translated into applied clinical diagnostic tools. In NANODIAGNOSTIC, we would offer a proof-of-concept of the application of super resolution microscopy and single-molecule imaging for cancer diagnostic, with a focus on patients stratification for immunotherapy. Novel advances in immunotherapies have brought the development of immune checkpoint inhibitors (ICI) that re-activate the immune system against the tumor. Despite the high success of these therapies there is one main challenge: they are only effective on a limited portion of patients and current diagnostic approaches are not capable of stratifying patient successfully. NANODIAGNOSTIC will translate advance optical methods from an academic setting to the clinic and holds a great potential to provide new diagnostic methods to improve the outcome of immunotherapy.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.