Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JAMA Neurology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pergamos
Article . 2013
Data sources: Pergamos
JAMA Neurology
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relationship of Mediterranean Diet and Caloric Intake to Phenoconversion in Huntington Disease

Authors: Shirley Eberly; Karen Marder; Karen Marder; Caroline M. Tanner; Ira Shoulson; David Oakes; Nikolaos Scarmeas; +3 Authors

Relationship of Mediterranean Diet and Caloric Intake to Phenoconversion in Huntington Disease

Abstract

Adherence to Mediterranean-type diet (MeDi) may delay onset of Alzheimer and Parkinson diseases. Whether adherence to MeDi affects time to phenoconversion in Huntington disease (HD), a highly penetrant, single-gene disorder, is unknown.To determine if MeDi modifies the time to clinical onset of HD (phenoconversion) in premanifest carriers participating in Prospective Huntington at Risk Observational Study (PHAROS), and to examine the effects of body mass index and caloric intake on time to phenoconversion.A prospective cohort study of 41 Huntington study group sites in the United States and Canada involving 1001 participants enrolled in PHAROS between July 1999 and January 2004 who were followed up every 9 months until 2010. A total of 211 participants aged 26 to 57 years had an expanded CAG repeat length (≥ 37).A semiquantitative food frequency questionnaire was administered 33 months after baseline. We calculated daily gram intake for dairy, meat, fruit, vegetables, legumes, cereals, fish, monounsaturated and saturated fatty acids, and alcohol and constructed MeDi scores (0-9); higher scores indicate higher adherence. Demographics, medical history, body mass index, and Unified Huntington's Disease Rating Scale (UHDRS) score were collected.Cox proportional hazards regression models to determine the association of MeDi and phenoconversion. RESULTS Age, sex, caloric intake, education status, and UHDRS motor scores did not differ among MeDi tertiles (0-3, 4-5, and 6-9). The highest body mass index was associated with the lowest adherence to MeDi. Thirty-one participants phenoconverted. In a model adjusted for age, CAG repeat length, and caloric intake, MeDi was not associated with phenoconversion (P for trend = 0.14 for tertile of MeDi, and P = .22 for continuous MeDi). When individual components of MeDi were analyzed, higher dairy consumption (hazard ratio, 2.36; 95% CI, 1.0-5.57; P = .05) and higher caloric intake (P = .04) were associated with risk of phenoconversion.MeDi was not associated with phenoconversion; however, higher consumption of dairy products had a 2-fold increased risk and may be a surrogate for lower urate levels (associated with faster progression in manifest HD). Studies of diet and energy expenditure in premanifest HD may provide data for interventions to modify specific components of diet that may delay the onset of HD.

Keywords

Huntington's Disease, Adult, Male, Canada, Time Factors, Clinical Sciences, Observation, Neurodegenerative, Mediterranean, Diet, Mediterranean, Severity of Illness Index, Body Mass Index, Medication Adherence, Rare Diseases, Predictive Value of Tests, Surveys and Questionnaires, Humans, Prospective Studies, Nutrition, Proportional Hazards Models, Retrospective Studies, Neurology & Neurosurgery, Prevention, Neurosciences, Middle Aged, United States, Brain Disorders, Diet, Huntington Disease, Phenotype, Huntington Study Group PHAROS Investigators, Disease Progression, Cognitive Sciences, Female, Trinucleotide Repeat Expansion, Energy Intake

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Green
bronze