Powered by OpenAIRE graph
Found an issue? Give us feedback

UOA (ΕΚΠΑ)

National and Kapodistrian University of Athens
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
13 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: BB/W018411/1
    Funder Contribution: 30,365 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-19-ENM3-0007
    Funder Contribution: 175,408 EUR
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-22-CE56-0002
    Funder Contribution: 490,032 EUR

    Phytoplankton is an essential component in the functioning of marine ecosystems and in the carbon cycle. It is therefore essential to assess its variability and its main drivers. However, unlike seasonal and interannual variations, fluctuations of phytoplanktonic biomass and communities on decadal to multi-decadal timescales remain hampered by the lack of long-term observations at global scale and the uncertainties related to the complex balance of the processes that control their fate. These processes are imperfectly and diversely parameterized in biogeochemical models, limiting their use to document long-term phytoplankton variability. Yet, it is crucial to detect natural low-frequency cycles in phytoplankton biomass (and thus carbon fluxes) because they can enhance, weaken or even mask climate-related trends. In this context, the inter/transdisciplinary DREAM project proposes to investigate and benchmark different deep learning (DL) frameworks (learned from satellite and in situ observations) to emulate past and future multi-decadal time-series of surface phytoplankton biomass and communities. This approach will allow us to assess the relative contribution of the different processes (e.g. physical, predation, community structures) involved in phytoplankton dynamics over the last decades in response to natural climate low-frequency variability but also to past and future anthropogenic forcing. Ultimately, DREAM will also contribute to characterizing and better constraining the uncertainties in the climate projections of the different Earth System Models gathered in the Coupled Model Intercomparison Project Phase 6 (CMIP6).

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N004655/1
    Funder Contribution: 683,435 GBP

    Mortality rates of trees in Amazonian rainforests have been increasing for at least 20 years. Yet, there have been no real attempts to understand the mechanistic basis of this result. TREMOR will use a combination of forest inventory data analysis and process-based modelling to investigate several hypotheses that could explain the increases in mortality. These hypotheses include (i) increasing wind disturbance, (ii) increasing drought frequency, (iii) increasing liana abundance, (iv) increased competition and (v) faster senescence. Finally, we hope to scale-up the impacts of increasing tree mortality on Amazon-wide carbon storage by using a dynamic global vegetation model.

    visibility380
    visibilityviews380
    downloaddownloads1,052
    Powered by Usage counts
    more_vert
  • Funder: UK Research and Innovation Project Code: AH/T013664/1
    Funder Contribution: 36,001 GBP

    The Feedback Musicianship Network (FMN) responds to the need to fill current gaps in knowledge around feedback instruments; we need a common language to describe their complex behaviour, and better understandings of: luthiery in hybrid instruments, virtuosity, composition and notation techniques. The FMN brings stakeholders in feedback musicianship together to establish a new research agenda addressing these gaps, and to build a community hub. This will stimulate and guide future developments in this field, supporting a new generation of instruments and musical practices. Feedback instruments offer a radically different way of engaging with musical practice compared to traditional instruments. They are defined by recirculation of signals through the instrument, which give the instrument 'a life of its own'; the player must guide the instrument rather than controlling it. They possess 'a stimulating uncontrollability' (Ulfarsson, 2019). The use of musical feedback began in the 1950s. Now, a new generation of instruments are using hybrid digital/electronic/acoustic technologies to refine the behaviour of the feedback, creating entirely new musical experiences, and providing fertile areas for creative new instrument designs and modes of musical practice. An example is the Feedback Cello, an acoustic cello augmented with string pickups and exciters; the string signals pass through external effects, and return to the cello through the exciters. This creates a feedback loop which the player navigates by damping and stimulating the strings, or by controlling the external effects. This is a radically different way of playing the cello, effectively turning it into a new instrument. In order to support the next generation of these instruments, we need to advance our understanding of how to shape the behaviour of complex feedback loops, and how to design and build instruments which are essentially hybrids, mixing complex signal processing with traditional acoustic luthiery, and electromechanical transducers that link these two domains. We also need to gain better understanding of the culture surrounding these instruments. This research demands interdisciplinary approaches involving music, engineering, mathematics, philosophy, design and computer science. The FMN will bring these groups together, along with practicing artists and industry representatives, for workshops and symposia at three themed network meetings: (1) Design, Making and Innovation, Aalborg University Copenhagen, (2) Musicianship and Notation, Berlin, (3) Approaches to Signal Processing, University of Sussex. The network will also run two longitudinal activities linking the three meetings: (1) composition of a piece for feedback ensemble, (2) progress reports from musicians learning and developing feedback instruments. These meetings will enable the community to establish a future research agenda, stimulate new activity in instrument design supported by knowledge exchange, and map out creative practices in feedback musicianship in order to guide future cultural engagement. The FMN has a strong interdisciplinary set of confirmed participants, and is guided by a highly qualified advisory board. It will engage further participants through live streaming and archiving of network events. The FMN will disseminate research though three peer reviewed journal articles, the key output being a research review and future research roadmap. Another key output of the network will be a new online hub for feedback musicians; we aim for this to become a focal point for the community to support future developments. The network will engage with the public at four concerts, also available online. Through concerts, knowledge exchange, and online sharing, the network will create impact by engaging the wider public in feedback musicianship, stimulating the design of new instruments and artistic practices, and by creating new dialogues between researchers and the public

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.