
A distributed system is made of interacting components. The current manual, ad-hoc approach to composing them cannot ensure that the composition is correct, and makes it difficult to control performance. The former issue requires reasoning over a high-level specification; the latter requires fine control over emergent run-time properties. To addressthis, we propose the Varda language (a work in progress) to formalize the architecture of a system, i.e., its components, their interface, and their orchestration logic. The Varda compiler checks the architecture description and emits glue code, which executes the orchestration logic and links to the components. The Varda system relies on a generic interception mechanism to act upon distribution-related system features in a transparent and uniform manner. Varda also takes into account important non-functional system properties, such as placement.
Distributed System, Architecture, Orchestration, [INFO] Computer Science [cs], Distributed Programming, Language, Composition
Distributed System, Architecture, Orchestration, [INFO] Computer Science [cs], Distributed Programming, Language, Composition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
