Downloads provided by UsageCounts
handle: 2117/402637
Many weight quantization approaches were explored to save the communication bandwidth between the clients and the server in federated learning using high-end computing machines. However, there is a lack of weight quantization research for online federated learning using TinyML devices which are restricted by the mini-batch size, the neural network size, and the communication method due to their severe hardware resource constraints and power budgets. We name Tiny Online Federated Learning (TinyOFL) for online federated learning using TinyML devices in the Internet of Things (IoT). This paper performs a comprehensive analysis of the effects of weight quantization in TinyOFL in terms of accuracy, stability, overfitting, communication efficiency, energy consumption, and delivery time, and extracts practical guidelines on how to apply the weight quantization to TinyOFL. Our analysis is supported by a TinyOFL case study with three Arduino Portenta H7 boards running federated learning clients for a keyword spotting task. Our findings include that in TinyOFL, a more aggressive weight quantization can be allowed than in online learning without FL, without affecting the accuracy thanks to TinyOFL’s quasi-batch training property. For example, using 7-bit weights achieved the equivalent accuracy to 32-bit floating point weights, while saving communication bandwidth by 4.6× . Overfitting by increasing network width rarely occurs in TinyOFL, but may occur if strong weight quantization is applied. The experiments also showed that there is a design space for TinyOFL applications by compensating for the accuracy loss due to weight quantization with an increase of the neural network size.
This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program (ASSIST-IoT) under Grant 957258, in part by the Spanish Government (DiPET CHIST-ERA) under Contract PID2019-106774RB-C21 and Contract PCI2019-111850-2, and in part by the Generalitat de Catalunya as Consolidated Research Group under Grant 2021-SGR-01059.
Peer Reviewed
Internet of things, IoT, Internet de les coses, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Federated learning, name=SDG 7 - Affordable and Clean Energy, /dk/atira/pure/subjectarea/asjc/2500/2500; name=General Materials Science, name=General Computer Science, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Machine learning, Aprenentatge automàtic, /dk/atira/pure/subjectarea/asjc/2500/2500, name=General Engineering, /dk/atira/pure/subjectarea/asjc/2200/2200; name=General Engineering, name=General Materials Science, /dk/atira/pure/subjectarea/asjc/2200/2200, TinyML, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, 000, federated learning, Approximate computing, approximate computing, 004, TK1-9971, /dk/atira/pure/subjectarea/asjc/1700/1700; name=General Computer Science, Electrical engineering. Electronics. Nuclear engineering, /dk/atira/pure/subjectarea/asjc/1700/1700
Internet of things, IoT, Internet de les coses, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Federated learning, name=SDG 7 - Affordable and Clean Energy, /dk/atira/pure/subjectarea/asjc/2500/2500; name=General Materials Science, name=General Computer Science, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Machine learning, Aprenentatge automàtic, /dk/atira/pure/subjectarea/asjc/2500/2500, name=General Engineering, /dk/atira/pure/subjectarea/asjc/2200/2200; name=General Engineering, name=General Materials Science, /dk/atira/pure/subjectarea/asjc/2200/2200, TinyML, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, 000, federated learning, Approximate computing, approximate computing, 004, TK1-9971, /dk/atira/pure/subjectarea/asjc/1700/1700; name=General Computer Science, Electrical engineering. Electronics. Nuclear engineering, /dk/atira/pure/subjectarea/asjc/1700/1700
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 51 | |
| downloads | 45 |

Views provided by UsageCounts
Downloads provided by UsageCounts