Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2024 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Queen's University Research Portal
Article . 2024
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Effects of Weight Quantization on Online Federated Learning for the IoT: A Case Study

Authors: Nil Llisterri Giménez; Junkyu Lee; Felix Freitag; Hans Vandierendonck;

The Effects of Weight Quantization on Online Federated Learning for the IoT: A Case Study

Abstract

Many weight quantization approaches were explored to save the communication bandwidth between the clients and the server in federated learning using high-end computing machines. However, there is a lack of weight quantization research for online federated learning using TinyML devices which are restricted by the mini-batch size, the neural network size, and the communication method due to their severe hardware resource constraints and power budgets. We name Tiny Online Federated Learning (TinyOFL) for online federated learning using TinyML devices in the Internet of Things (IoT). This paper performs a comprehensive analysis of the effects of weight quantization in TinyOFL in terms of accuracy, stability, overfitting, communication efficiency, energy consumption, and delivery time, and extracts practical guidelines on how to apply the weight quantization to TinyOFL. Our analysis is supported by a TinyOFL case study with three Arduino Portenta H7 boards running federated learning clients for a keyword spotting task. Our findings include that in TinyOFL, a more aggressive weight quantization can be allowed than in online learning without FL, without affecting the accuracy thanks to TinyOFL’s quasi-batch training property. For example, using 7-bit weights achieved the equivalent accuracy to 32-bit floating point weights, while saving communication bandwidth by 4.6× . Overfitting by increasing network width rarely occurs in TinyOFL, but may occur if strong weight quantization is applied. The experiments also showed that there is a design space for TinyOFL applications by compensating for the accuracy loss due to weight quantization with an increase of the neural network size.

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program (ASSIST-IoT) under Grant 957258, in part by the Spanish Government (DiPET CHIST-ERA) under Contract PID2019-106774RB-C21 and Contract PCI2019-111850-2, and in part by the Generalitat de Catalunya as Consolidated Research Group under Grant 2021-SGR-01059.

Peer Reviewed

Keywords

Internet of things, IoT, Internet de les coses, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Federated learning, name=SDG 7 - Affordable and Clean Energy, /dk/atira/pure/subjectarea/asjc/2500/2500; name=General Materials Science, name=General Computer Science, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Machine learning, Aprenentatge automàtic, /dk/atira/pure/subjectarea/asjc/2500/2500, name=General Engineering, /dk/atira/pure/subjectarea/asjc/2200/2200; name=General Engineering, name=General Materials Science, /dk/atira/pure/subjectarea/asjc/2200/2200, TinyML, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, 000, federated learning, Approximate computing, approximate computing, 004, TK1-9971, /dk/atira/pure/subjectarea/asjc/1700/1700; name=General Computer Science, Electrical engineering. Electronics. Nuclear engineering, /dk/atira/pure/subjectarea/asjc/1700/1700

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 51
    download downloads 45
  • 51
    views
    45
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Top 10%
Average
Average
51
45
Green
gold